5,337 research outputs found

    Ultrastable CO2 Laser Trapping of Lithium Fermions

    Get PDF
    We demonstrate an ultrastable CO2 laser trap that provides tight confinement of neutral atoms with negligible optical scattering and minimal laser-noise- induced heating. Using this method, fermionic 6Li atoms are stored in a 0.4 mK deep well with a 1/e trap lifetime of 300 sec, consistent with a background pressure of 10^(-11) Torr. To our knowledge, this is the longest storage time ever achieved with an all-optical trap, comparable to the best reported magnetic traps.Comment: 4 pages using REVTeX, 1 eps figur

    Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species

    Get PDF
    Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. These results cannot resolve the historical role of alien species in establishing the distribution of Bd across Europe or other regions in the world where this species was introduced, but they show its potential role as a Bd reservoir capable of transmitting lethal infections to native amphibians. Finally, our results also suggest that the removal of infected bullfrogs from aquatic environments may serve to reduce the availability of Bd in European amphibian communities, offering another justification for bullfrog eradication programmes that are currently underway or may be considere

    Performance of a deterministic source of entangled photonic qubits

    Get PDF
    We study the possible limitations and sources of decoherence in the scheme for the deterministic generation of polarization-entangled photons, recently proposed by Gheri et al. [K. M. Gheri et al., Phys. Rev. A 58, R2627 (1998)], based on an appropriately driven single atom trapped within an optical cavity. We consider in particular the effects of laser intensity fluctuations, photon losses, and atomic motion.Comment: 10 pages, 6 figure

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 ÎĽ\muK to 10 ÎĽ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure

    Q-value of the superallowed beta decay of Ga-62

    Full text link
    Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.Comment: 12 pages, 3 figures, 2 tables, submitted to Phys. Lett. B. v2: added acknowledgement

    State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

    Get PDF
    Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let

    Beta-delayed-neutron studies of 135,136^{135,136}Sb and 140^{140}I performed with trapped ions

    Get PDF
    Beta-delayed-neutron (β\betan) spectroscopy was performed using the Beta-decay Paul Trap and an array of radiation detectors. The β\betan branching ratios and energy spectra for 135,136^{135,136}Sb and 140^{140}I were obtained by measuring the time of flight of recoil ions emerging from the trapped ion cloud. These nuclei are located at the edge of an isotopic region identified as having β\betan branching ratios that impact the r-process abundance pattern around the A~130 peak. For 135,136^{135,136}Sb and 140^{140}I, β\betan branching ratios of 14.6(11)%, 17.6(28)%, and 7.6(28)% were determined, respectively. The β\betan energy spectra obtained for 135^{135}Sb and 140^{140}I are compared with results from direct neutron measurements, and the β\betan energy spectrum for 136^{136}Sb has been measured for the first time

    Beta-decay branching ratios of 62Ga

    Get PDF
    Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the vector coupling constant of the weak interaction and the Vud quark-mixing matrix element. For part of the experimental studies presented here, the JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga. The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is in agreement with previous measurements and allows to determine the ft value and the universal Ft value for the super-allowed beta decay of 62Ga
    • …
    corecore